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Received 27 July 1992, in ha1 form 16 Octo& 1992 

Abstract We develop a Smoluchowski-type mean-field Veatment for a recently intmduced 
model of ballistic agglomeration. ?he predictions of this mean-field themy for the 
exponent characterizing typical duster size are in agreement with earlier cesults for all 
dimensions. Neverthetess, the predicted monomer decay and panicle size distribution 
are lotally at vdriance with the numerical observations in one dimension. The reason 
for this discrepancy is found to be the fact that high velocity panicles malesce rapidly 
independally of their mass, which introduces mrrelations not Iaken into acmunt by the 
mean-field Ueatmenr ?his is likely to persist in all dimensions, sa that the model has 
no upper critical dimension. The case where the initial velocity distribution function of 
lhe particles has a power-law fail is also examined. It is found that, at least in one 
dimension, the 'ypical duster size behaves in a way that depends on the specilk velocity 
distribution function, whereas the monomer decay does not. 

Irreversible aggregation phenomena have attracted a certain amount of attention 
recently: scaling theories [I], rate equations [Z], numerical studies of explicit 
models [>SI and exact solutions [6] have been developed. All this work has principally 
concentrated on the case of diffusive dynamics. Recently, the following model was 
proposed [7J to model aggregation phenomena with ballistic transport: particles of a 
given radius move with random (bounded) initial velocities in a ddimensional space; 
upon two particles colliding, they join to form one larger particle of mass equal to the 
sum of the particle masses and with correspondingly larger radius. In the following, 
we shall always assume 'regular growth', i.e. the radius is assumed to grow so that 
the volume of the particle is proportional to its mass. The generalization to the 
case of fractal growth is straightfomrd. The velocity is determined by requiring 
the conservation of momentum. This model is viewed as an idealization for a 
large class of related, but far more complex phenomena, such as the coalescence 
of vortices in hydrodynamics [4] or the formation of planets by collision from smaller 
components [8]. We shall also consider the case where the initial distribution of 
velocities has a power-law tail, which may be relevant if the aggregating particles are 
carried by a turbulent fluid. 

From the point of view of mean-field theory, such models can be described by a 
Smoluchowski equation [9] for the concentrations c i ( t )  of particles of mass i 
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where K ( i , j )  is the rate at which two particles of masses i and j respectively react 
Once K ( i , j )  is !mown, an extensive scaling theory [1,2] exists that allows one to 
find the large4 and large-j behaviour of cj(t). One has in particular 

C j ( t )  - j - Z @ ( j / s ( t ) )  s ( l )  - 1’’ (t  + m) (2) 

where s ( t )  is the typical cluster size and @(x) a scaling function. The behaviour of 
a ( + )  for small x can be of two different types: it can go as a power law in I, with 
the exponent traditionally called WIZ,  or it can be of the form exp(-x-”). In the 
fust case, one then finds 

q ( t )  - t-” 

c j ( t )  - j-. 
( 1  3 03) 

(1  << j << s ( t ) )  
(3) 

where the scaling relation (2 - T ) Z  = w determines [l] T .  This is commonly known 
as ‘type I’ behaviour. In the latter case, usually known as ‘type 111’ behaviour, one 
has instead 

q ( t )  - exp( - t ’” )  ( 1 + c o )  (4) 

and there is no power-law behaviour for the particle size distribution as in (3). 
For ballistic rransport, an ansatz for h7(;, j) is needed. The most natural is to 

take the product of the mutual cross section of the two particles and their relative 
velocity, i.e. 

K(i , j)  = (R(i) + R(j ) )d- l lv ( i )  - v ( j ) l  (5) 

where R( i) is the (average) radius of a particle of mass i and v (  i) its average speedt. 
If we assume that the aggregates grow regularly, one finds R(i)  - The scaling 
of v ( i )  is obtained by noting [7] that the momentum of a particle of mass i is given 
by the sum of the momenta of its constituents, which are randomly distributed and 
of order one. From this follows that u ( i )  - i-I/*. The degree of homogeneity X of 
K ( i , j )  is then 1/2 - l /d,  so that the standard result from the scaling thcory 

2d -- 1 
z = - -  

I - X  d + 2  

is in agreement with the scaling result of [7]. 

K ( i , j )  equal to 
results [2] that one has ‘type III’ behaviour with the exponents 

Let us now look in more detail at the one-dimensional case. There, one has 
-j-Ilz1.  Since K(1,i) > K(i , i ) ,  it follows from standard 

@(z) - exp(-lxl-1/2) 

c l ( t )  - exp(-t1l3) 

(I - 0) 
(t  -* 03). 

(7) 

t We take the absolute valuc of the difference in speed 8% an estimate 01 the average relative speed, that 
b, we implicitly perform the necessary averaging over orientation, which gives nothing but an helevant 
prelaclor. 



Letter to the Editor L181 

I o  

-2- 

-3. 

-4 -  
I 

1 2 3 4 5 6 
log t 

F w r c  I Double logarithmic plot of panicle number c (circles) and monomer 
mncentration c1 (ROW) against time. 

We have performed numerical simulations on this model, using 16 particles on a 
straight line with random initial velocities between -1 and 1 at t = 0. Free boundary 
conditions were used, except in the case of very low reaction rates, where it was 
necessary to use periodic boundaly conditions. The initial particle configuration on 
the line was taken to be either random or uniform. The latter was used for simulations 
involving velocity distribution functions with power-law large velocity tails, as the short 
interparticle distances present in the random initial configuration induce long-lived 
transients. 

The results of these simulations, shown in figure 1, indicate that q ( t )  decays 
approximately as 1-' .  In fact, it can be shown that t-' is a lower bound on cl(t), as 
the following conjunction of three events is sufficient for a monomer to survive until 
time 1 without reacting: 

(i) It has an initial velocity of the order t-'I3 or less. 
(i) For all k of order t213 or less, the sum of the initial momenta of the k particles 

@)A similar condition on the sum of the momenta of the particles to the left being 

That the particle at the origin then remains a monomer until time t follows from 
the remark that it cannot collide with the kth particle to the left or right, since 
then by conditions (ii) and (iii) the lcth particle acquires a momentum away from 
the central.particle before colliding with it. Values of k larger than t2f3 can be 
disregarded, since t2f3 corresponds to the maximal cluster size. All three events are 
mutually independent and each has probability t-'13. For event (i) this follows from 
the assumption that there is a finite probability density at zero velocityt, so that a 

to its right is positive. 

negative. 

t Even if this is not the case, the aponenls will be unaffected in lhe scaling snse.  Thus, a distribution 
such as U = i 1  has palhologies, such as exponential decay of cl(t), but cz(t) L t-2i? since mndition 
(i) is vacuously fulfilled. I1 can k checked that cl(t) - l / t  for 1 < j < s ( t ) ,  however, even m lhis 
peculiar case, so lhat w = 1 is me in Ihe rraling limit. 
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velocity of order t-'13 has a probability of the Same order. Event (i) corresponds 
to the probability that a random walk starting at the origin remains positive for t2 /3  
steps, which has probability [lo] t - I I 3 ,  so that 

q ( t )  2 constant x t - ' .  (8) 

Some thought will show that these conditions are also. in essence. necessary, so that 
c,(f) - as indicated by our simulations. 

- 6  

1 2 3 4 5 6 7 
log m 

Figure 2. Double logarithmic plot of c,(r) wmus m a1 t = 1wO (crosses) and t = M O O  
(circles). The slope of the bat fit tine is approximately -112, as predicted ly the theory. 

From the above and the scaling relations of (3) it follows that cj(f) goes as 
f r  with T = 1/2 for 1 < j < s(f) .  We check that this is indeed correct 
(figure 2). Again, this is strongly at variance with the mean-field prediction, that the 
particle size distribution should be 'bell-shaped', that is, peaked around the typical 
size and decaying sharply for both large and small particle sizes (so-called 'type III' 
behaviour [2]). It is not quite clear to us at this stage how our results compare with 
those of 171. They do not explicitly report numerical values for the exponents UJ and 
7 ,  but they do claim to have obsewed a certain scaling relationship, however this 
does not seem to coincide with the results obtained here. Specifically, it appears to 
predict a T exponent of 0 instead of 1/2 

Such a complete failure of mean-field theory is rather surprising: indeed, since 
ballistic trajectories become transparent above one dimension, it is natural to think 
of d = 1 as the upper critical dimension for processes involving ballistic transport, as 
occurs with d = 2 in the case of diffusive aggregation [3,11]. 'Ib find.the explanation, 
we looked at the mass dependence of U( i). In order to derive (4) from the expression 
in (3) for the reaction rate, we had assumed that ~ ( i )  goes as While this is 
true for the typical velocity of a cluster of typical mass, we find in our simulations 
that a fixed lime the velocity is essentially independent of mass. In one dimension 
this can be explained by noting that any particle with an exceptionally high velocity 
would quickly disappear by reacting with one of its neighbours. Such is not the case, 
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however, if the reaction rate K <L: 1. In this case, one expects that a regime of mean- 
field behaviour will be found for intermediate times. We have performed simulations 
to verify this hypothesis. In these simulations, whenever two particles collide, they 
react with probability K to form a larger particle and pass through one another with 
no change in velocity with probability 1 - K. (This latter case may not appear very 
realistic, but it is a way to eliminate correlations and thus check whether our mean- 
field treatment is indeed the appropriate one.) The results are shown in figure 3 for 
the case of the reaction rate K equal to 0.05. The monomer concentration is found 
to decay approximately as exp(-Ct1l3) over a time range extending from 10 to 100, 
which then crosses over to the expected t-' decay. A plot of u( i) against i also 
reveals the expected behaviour of P1/* at intermediate times. It should be pointed 
out that the usual i-' behaviour is always recovered in the long-time h i t .  This 
allows one m reject the suggestion that the discrepancy with mean-field theory is due 
to the pathological feature that particles cannot avoid each other in one dimension. 

Fenre 3. Plot of logct(t) against t1I3 for the reaction rate h' Gual Lo 0.05. An 
approximate straight line regime "spanding to times less than 1M) is seen. me later 
decay (not shown in this figure) can be checked Lo go as t-'. 

In all of the above, we assumed that the initial velocity distribution function 
(VDF) had finite variance, so that the central limit theorem could be invoked to yield 
u( i) - i-'/'. An interesting generalization is the case where the initial VDF has a 
stable distribution of exponent a. One then has 

as long as a > 1, that is, as long as the average velocity is finite. The case of infinite 
average velocity is somewhat more involved and will be studied in a forthcoming 
publication [12]. In one dimension, we have confirmed these results both for a = 1 
and a = 3/2 (see figure 4). 

For the decay of monomers, we found numerically that the value of the exponent 
w was roughly equal to one independently of a. To understand this remarkable 
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Figure 4 Double logarithmic plot of particle number c (crosses) and monomer 
concentration c1 (circler) against time for an initial VDP with a power-law tail 
P(u) Y u-s/2 for large U. ?he full CUNS show the theoretical predictions. 

'superuniversality', consider two typical neighbouring clusters at time t. Their 
constituent particles at 1 = 0 fill two adjacent intervals. If now an additional 'test' 
particle starts between these two intervals and if its initial velocity is sullieicntly low 
to ensure that it is not likely to collide with either of its two neighbours before time 
t, this particle will survive as a monomer at time 1. If we denote by N ( t )  the total 
number of clusters and by E(f) the typical velocity at time t, one finds that the 
probability of a particle being between two such intervals is roughly N ( t )  and the 
probability to start with a low enough velocity is about E(t ) .  Thus one finds 

q ( t )  2 constant x N(t)iS(t)  - t- ' .  (10) 

Again, it appears very likely that this lower bound is in fact exact. 
Let us now consider higher dimensions. It is clearly important to know whether 

mean-field theory will eventually be correct in some upper critical dimension. We 
surmise that this will not happen. The ansatz (3) for the kernel A'(i,j) gives, in the 
terminology of [Z], p = -1/2, and hence 

which also imply that the particlc size distribution is bell-shaped. These results have 
a rather simple physical interpretation: if R( 1 )  is the typical cluster radius, then the 
total reactive area of the system is roughly N ( t ) R ( t ) d - ' ,  which decays as t -2 / (d+2) .  
If one then assumes 

C, = -constant x A( t )c ,  (12) 

one obtains exactly the above formulae. 
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These results, however, all rely upon the assumption that a VDF of the form 
v( i) - is eventually established. In view of the one-dimensional results, this 
is higNy questionable. Indeed, in higher dimensions, the conservation of the total 
volume fraction 4 causes the mean free path of a cluster to be of the order of 
the typical cluster radius. This may well eventually eliminate high-velocity particles 
regardless of mass and lead to v ( i )  being mass-independent, as in one dimension. In 
fact, we may repeat the preceding argument: let the constituent particles of distinct 
clusters at time 1 be labelled at t = 0 by the cluster they belong to at time t. Assume 
that particles with the same label are initially located in one regular (more or less 
spherical) domain of volume approximately s(t), where s(t) is the typical cluster 
size. Then the probability that an additional 'test particle' falls in the interstitial 
region between these domains is of the order of s(t)-lid. If this particle has in 
addition a velocity of the order of E( t) or less, it will sulvive as a monomer up to 
time f. This latter condition has a probability of ?J(t)d,  as all components of the 
velocity must be small, so that 

contradicting (11), which claims stretched exponential behaviour for c1( t). However, 
it should be borne in mind that, for many systems of practical interest, one has + 1, 
so that the mean free path is infinite in practice. Mean-field theory would then be 
valid in much the same way as it is valid for low reaction rates in one dimension. 
Simulations in higher dimensions are clearly desirable, but they are, unfortunately, 
quite difficult to perform. 

Summarizing, we b d  that the model of ballistic aggregation studied in 171 has 
the exponents z = 2/3 and w = 1 in one dimension. The latter is incorrectly 
predicted by mean-field theory to be a stretched exponential. The reason for this 
discrepancy lies in the fact that the VDF at large times is independent of mass. The 
case of initial VDFs obeying a stable law with bite mean velocity was also studied. 
Scaling arguments analogous to those used in the previous case were found to agree 
with numerical work We found that the value of z changed continuously with the 
stable law exponent, whereas the value of one for the exponent w is unaffected by 
these variations, thus exhibiting a 'superuniversal' behaviour. We further speculate 
that these discrepancies will persist in higher dimensions, so that there is, strictly 
speaking, no upper critical dimension for this system. These effects may well be 
unobservable unless the volume fraction is sufficiently large, however, so that mean- 
field theory will presumably be excellent for a large variety of systems with small 
volume fractions. 

The authors are grateful to one of the referees for pointing out to him that part 
of this work had been done independently by J Piasecki (talk at the Berlin Statphys 
meeting). This work was supported in part by CONACYT as well as grant IN100491 
of DGMA. 
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